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Lecture no.1 
 

Basic  Сoncepts  about  Nonideal  Plasma 
 

 Introduction  
 
 It is well known that at low densities plasma can be considered as a  
mixture of ideal gases of electrons, atoms, and ions. In this case the 
particles move along straight lines, and sometimes collide with other 
particles. With increasing of plasma density, the average distances 
between particles decrease and particle’s interacting time increases, 
therefore, the average potential energy increases. If this energy  gets to 
be comparable with average kinetic energy of thermal motion, i.e., 

kineticU E≈  , the plasma becomes nonideal. It should be noted that 
properties of such plasma cannot be described by traditional methods of 
theoretical physics. The interaction between particles in fully ionized 
plasma can be described by long-range Coulomb potential.  In the case 
of complex plasma consisting of electrons, ions, atoms, molecules, 
clusters etc., different interaction potentials should be used.    
  
 Interparticle  Interactions  and  Criteria  of  Nonideality   
 
 The ratio between the average interaction potential energy of 
particles  and the mean thermal energy  Bk T  is used as a criterion of 
nonideality of a plasma.  For nondegenerate singly ionized plasma this 
condition can be written by coupling (nonideality) parameter Γ : 
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where a  is the average distance between particles and related to the 
plasma density by the following simple relation: 
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In the case of multiple ionized plasma the different nonideality 
parameters for ion–ion, ion–electron, and electron–electron interactions 



 2

should be used. For example, in a fully ionized plasma with ions having 
charge number Z  we have the following relations: 
 

5 / 3 2
5 / 3

2 / 3 2
2 / 3

2

.

Z Z e e
B

Z e e e
B

e e
B

Z e Z
a k T

Z e Z
a k T

e
a k T

Γ = = Γ  ;

Γ = = Γ  ;

Γ =  
                                    (3) 

  
It should be noted that coupling parameters (1) and (3) can be 

applied for semiclassical dense plasma. For describing of classical 
plasma the following nonideality parameter is usually used: 
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where  Dr  is the Debye screening radius. Thus we can consider the 
following types of plasma by above mentioned parameters: 

• Ideal plasma (at , 1γΓ � ). 
• Weakly nonideal plasma (at , 1γΓ < ). 
• Nonideal plasma (at , 1γΓ ≥ ). 
• Strongly nonideal (coupled) plasma (at , 1γΓ � ). 

To determine of the condition of classicality we should compare 
the characteristic distance between particles with the thermal electron 
wavelength (2 )e e Bh m k Tλ = . Since the minimal characteristic radius of 
the ion–electron interaction is  2 / BZe k T , the condition of classicality 
can be written as 
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The condition of classicality can be also written in terms of   the 
degeneration parameter ξ : 

1F

Bk T
εξ = �        ,                                  (6) 

here  ( )2/32 23 / 2F en h mε π=  is the Fermi energy.  Sometimes another 
degeneration parameter  1/θ ξ=  can be also used for describing of 
semiclassical plasma’s properties.  
 Notice that further compression of the plasma causes an increase of 
nonideality, but up to a certain value (limit) only, because at  3 1e en λ ∼  
with increasing density degeneracy of electrons occurs. For example, in 
metals 23 310en cm−∼  and electrons are degenerate at  510T K≤ , i.e., 
almost always. With increasing of plasma density the Fermi energy can 
be chosen as a kinetic energy scale. Therefore,  the quantum criterion of 
ideality has the following form: 
 

2 1/3 / 1q e Fe n εΓ = �  .                                       (7) 
 

Since   2 /3
F enε ∼  we can conclude that  1/3 1/3/q e F en nε −Γ ∼ ∼ , i.e., the 

quantum criterion parameter qΓ  decreases with increasing electron 
density. Consequently, the degenerate electron plasma becomes more 
ideal with compression. Notice that, at higher densities, only electrons 
can be considered as an ideal Fermi gas, whereas the ion component is 
nonideal.  
 As a dimensionless density parameter Sr  the ratio between average 
interparticle distance  a  and the Bohr radius Ba  is used  /S Br a a= , 
where  2 80,5 10Ba h me cm−= ≈ ⋅ .  
 
  Screening of Charged Particle’s Field in Plasma 
  

Due to the long–range character of the Coulomb potential the 
manyparticle interactions at large distances are important. The potential 
created by the selected test particle and its plasma environment is the 
well known  Debye potential:  
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where  k  corresponds to different charged plasma species and Dr  is the 
Debye screening radius: 
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According to (4) the criterion of ideality for singly charged plasma can 
be written as 
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Let us introduce the number of electrons in the Debye sphere 
( ) 34 / 3D e DN n rπ= . Then the criterion (10) can be expressed in terms of  

DN  as  3 1/ 2 1(3 ) (3 )DNγ −= Γ = .  For ideal plasma we have condition 
1DN � .  

 If the electrons of plasma are degenerate, i.e., 
3 1e en λ � , the 

screening length by degenerate electrons is defined by the Thomas–
Fermi radius: 

2 2( / 3 ) / 4TF er n h meπ=    .                             (11) 
In a two–component electron–ion plasma, in which the electrons are 
degenerate but ions are classical, the screening radius of the test charge 
is defined by the following expression: 
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TF D Dr r r r− − − −= + ≈   .                           (12) 

 
 Quantum Effects in Interparticle Interactions 
 

At small distances (when average distance between particles is 
approximately equal to the thermal wave-length, i.e.,   ea λ∼ ) we have 
to take into account  quantum effects (for instance, diffraction and 
symmetry effects). These effects lead to the formation of atoms and 
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molecules and play an important role.  Taking into account these effects 
eliminates the divergencies at small distances between particles.   
 For adequate taking into account of quantum effects at small 
distances the Slater sum and the Boltzmann factor should be jointly 
applied. It is known that  the probability density of finding two particles 
at a distance  r  in classical statistics is proportional to the Boltzmann 
factor  ( )exp ( ) / Br k T−Φ , here ( )rΦ  is the interaction potential between 
two particles.  In quantum physics such probability is defined by the 
Slater sum: 
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where  nΨ  and nE  are the wavefunctions and the corresponding 
eigenvalues of the energy of two particles, respectively, and the 
summation in (13) is performed over all states of discrete and 
continuous spectra. 
 Let us define the pseudopotential  ( , )r TΦ�  as a potential giving in 
the classical case the same particle distribution in space as the potential 

( )rΦ  gives in the quantum case, i.e. 
 

2( , ) ln ( , )Br T k T S r TΦ = −�  .                           (14) 
 

Notice that the pseudopotential ( , )r TΦ�  has the limiting value at 0r =  
and coincides with ( )rΦ  in the limit T → ∞ . At large distances ( r → ∞ ) 

( , )r TΦ� has a Coulomb-like asymptotic dependence.  
From equation (14) at T → ∞  and  ,e in n → ∞  the following expression 
for effective potential is obtained (C.Deutsch e.a., 1980): 
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 Taking  into Account  both Quantum and Screening Effects 
 
 It should be noted that even in a rarefied plasma, when  1γ �  , 
one cannot directly apply the formulas of ideal gas theory for describing 
the thermodynamic and transport properties of the plasma. Some 
quantities such as the second virial coefficient or the mean free path are 
diverging due to the specific character of the Coulomb interaction. It is 
known that the Coulomb potential  has a long range character at large 
distances and an infinite divergence at small distances. 
The divergence at small distances is eliminated by taking into account of 
quantum diffraction and symmetry effects. The  divergencies of physical 
quantities  at large distances can be eliminated  by taking into account 
the effect of charge screening in plasma.   
 Notice that diffraction effect is related to the de Broglie waves of 
microparticles and symmetry effect corresponds to the Pauli exclusion 
principle.   

Consequently, in dense semiclassical plasma the collective 
(screening) and quantum-mechanical effects play an important role in 
the studies of thermodynamic and kinetic properties of the system. In 
general case these potentials contain quantum diffraction effects at short 
distances, as well as screening effects for large distances (T.Ramazanov 
e.a., 2002): 
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for electron-electron and electron-ion interactions and here  
 

     ( )2 2 2
2

1 1 1 / ;
2 DA rαβ

αβ

λ
λ

= − −    ( )2 2 2
2

1 1 1 /
2 DB rαβ

αβ

λ
λ

= + −  . 

For describing of ion-ion interactions we have the following expression 
(T.Ramazanov e.a., 2010) : 
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Figure 1. Effective potentials for fully ionized semiclassical plasma.  

1 – The Debye potential; 2 – The Deutsch potential;  
3 – (T.Ramazanov etc., ion-ion) 
4 – (T.Ramazanov etc., e-e, e-i) 

5 – The Deutsch  potential for  i-i  interaction;  
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